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Models that can be used in calculating the transport parameters of a porous medium are considered. Despite
their simplicity, the models qualitatively and quantitatively characterize popular classes of porous media and
are not given in the literature in the context in question, as far as the authors know. Certain aspects of de-
termination and evaluation of the parameters of radiative transfer in a porous medium are discussed.

Filtration combustion is a complex physicochemical process of combustion in a porous medium, which is ac-
companied by the filtration of gases and combined heat and mass exchange [1–3]. Filtration combustion includes, in a
broad sense, the gasification of solid hydrocarbons, combustion in a peat bed, the sintering of ores, self-propagating
high-temperature synthesis, and other processes. Interest in filtration combustion has recently grown because of the
prospect for converting efficiently hydrocarbon fuels to synthesis gas and hydrogen [4–8] and owing to the investiga-
tions of gas and liquid scrubbing by the method of oxidation in superadiabatic filtration-combustion waves [9–11]. The
demand for reliable modeling of such systems with the aim of optimizing the structure, scaling, and predicting the pa-
rameters, regimes, etc. has risen [12].

Experience gained in numerical and experimental investigation of filtration-combustion systems [3, 5, 8] shows
that the largest uncertainty (error) in the modeling is introduced, in addition to chemical kinetics, by the incorrect as-
signment of structural parameters and related parameters of heat and mass transfer in a porous medium. The latter is
the most important in numerical optimization and selection of a porous medium for the assigned process or setup.

A mathematical model for description of filtration combustion in the regime of strong thermal coupling with
the skeleton (low-velocity regime) has been approved and is constructed on heat- and mass-balance equations, filtration
equations, and those of state [2, 3, 5, 8]. The most important structural parameters of porous media are porosity, spe-
cific surface, characteristic dimension of solid-phase particles, and quantum free path. It is precisely on them that the
calculation of the interphase heat and mass exchange and the radiant and effective thermal conductivity of a porous
medium and dispersion diffusion and heat conduction in the gas phase is based [2, 3].

The simplest porous medium is a monodisperse spherical charge. It is completely described by two easily
measured parameters: spherical diameter and average porosity. (Certain nuances are related just to the determination of
effective free path, which will be shown below.) Other types of porous media (fibrous, layered, and high-porosity
ones) frequently have no unambiguous and convenient description. As a rule, one easily establishes the porosity and
type of medium (monodisperse, polydisperse, ordered, disordered) and packing (fibrous, layered, spongy, etc.) and one
characteristic linear dimension — particle diameter, number of pores per unit length, etc. In such cases it becomes nec-
essary to determine the relationship between the parameters measured and the remaining parameters — specific sur-
face, characteristic dimension of solid-phase particles, and quantum free path — and to formulate the required heat-
and mass-exchange models.

In this work, we describe the models of a porous medium that can be used for calculation of the interrela-
tionship between its structural and transport parameters. The formulation of the models has been simplified as much as
possible; different classes of porous media are well described. We give the basic formulas relating the structural (geo-
metric), hydrodynamic, and thermophysical parameters of a porous medium. We briefly discuss certain methodological
aspects of determination and evaluations of the parameters of radiative transfer in a porous medium.
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Relationship between the Structural Parameters of a Porous Medium and the Transport Characteristics.
The basic hydrodynamic equation for porous media is the equation relating the pressure gradient and the filtration rate.
Many researchers use the Forchheimer binomial equation:

∇p = − 
µ
k0

 ug − 
ρg

k1
 ug ug ,

where k0 = 
m3dp

150(1 − m)2
, k1 = 

m3dp

170(1 − m)
 [13] and the medium is characterized by the average diameter of solid-phase

particles dp and the porosity m.

To determine the heat-transfer coefficient we use the expression of the Nusselt number by the dimensionless
Reynolds and Prandtl numbers: Nu = f(Re, Pr) [14, 15]. The equivalent pore-channel diameter d0 is used for compu-
tation of the Nu and Re numbers in considering the internal problem: Nu = hd0

 ⁄ λ and Re = ugd0
 ⁄ ν, whereas the av-

erage particle diameter dp is used in considering the external problem. According to definition, the equivalent diameter
of the pore channel is the inside diameter of a cylindrical tube having the same porosity and specific area of the in-
terior surface as those in the porous medium:

d0 = 
4m
S

 . (1)

We note that the diameter d0 determined in such a manner bears no direct relation to the geometric parameters meas-
ured — the pore diameter dpor (which can be determined as the diameter of a sphere inscribed into the pore), the av-
erage distance between the centers of the pores, and others.

Let us give the empirical formulas of Ae′rov and Todes [16] and of Wakao and Kaguei [17] that are most
frequently used in computational-theoretical investigations of filtration combustion

Nu = 0.395 




2m
3 (1 − m)





−0.36

 Re
0.64

Pr
1 ⁄ 3 ,   Re > 65 , (2)

Nu = 2 + 1.1m
0.6

Re
0.6

Pr
1 ⁄ 3 . (3)

The coefficient of volume heat exchange α directly appearing in the heat-balance equations is found as the
product of the coefficient of surface heat exchange and the specific surface of the porous medium: α = hS. The spe-
cific surface of the porous medium is expressed by the specific surface of an individual particle Sp and the porosity:

S = Sp (1 − m) . (4)

Dispersive transfer in the gas phase is the most important mechanism of transfer. It is equivalent to the dif-
fusion mechanism and is determined by the space- and time-averaged stochastic "sputtering" of gas particles. To cal-
culate dispersive diffusion most researchers use semiempirical formulas of the following type [17, 18]:

D
N
 = 

Dgm

T
~  + 0.5dpug , (5)

D
M
 = 

Dgm

T
~  + 0.1dpug , (6)
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where the longitudinal (5) and transverse (6) dispersion are differentiated. In [3], it has been shown that for isotropic
media and filtration-combustion problems, it is physically justified to use the same values of the coefficients for lon-
gitudinal and transverse dispersion

D
M
 = D

N
 = 

Dgm

T
~  + 0.1dpug .

The reason is that the relaxation component of dispersion is insignificant for formation of a quasistationary concentra-
tion profile of the front. The dispersion component related to the velocity pulsation (mechanical dispersion) cannot be
substantially anisotropic in isotropic media. However, this important issue has yet to be discussed in the scientific lit-
erature. We note that, in view of the predominance of the second terms in Eqs. (5) and (6), the exactness of the val-
ues of the porosity and the crookedness of channels exerts no substantial influence on the general exactness of the
expression.

Radiative transfer in a porous medium is the dominant mechanism of heat transfer at high temperatures in the
wave T > 1000oC. The radiative-heat-conduction model widely used for calculation of radiant heat fluxes gives, for the
coefficient of radiative heat conduction, the expression

λrad = 
16σεl0T

3

3
 . (7)

The quantum mean free path l0 is in essence the geometric characteristic of a porous medium, which is equal
to the mean distance between the surface points of the solid phase within the line-of-sight range. We have the distinc-
tive feature of the transfer model, first indicated in [3] and lying in the fact that the radiative-heat-conduction model
implies the localizability and isotropy of quantum emission and absorption (porous medium — a "gray gas"), whereas
this is not observed in the actual porous medium. For formal application of the "gray-gas" model (meeting the require-
ment of isotropy and localizability of emission and absorption) to a porous medium we should assume that emission
and absorption are distributed in the particle volume and do not occur at a specific surface point of the solid phase,
and the emission temperature corresponds to the mean particle-surface temperature. However, in this case the quantum
effective free path l0 appearing in (7) must be larger than the quantum geometric free path l by a value of the order
dp

 ⁄ 2. (This reasoning is true of any other model of radiative transfer in a porous medium that assumes the "gray-gas"
approximation.) A comparison with experimental data on the radiative heat conduction of solid spherical packings [3]
shows the physical justifiability of this reasoning and the higher accuracy of corresponding models.

The issue of the correspondence of the radiative-heat-conduction model to the radiative transfer of heat in a
porous medium is discussed in [3] in greater detail. Below, we give expressions for the quantum geometric free path
in a porous medium l and those recommended for calculation of the radiative thermal conductivity l0. Thus, for close
packings of particles, the higher accuracy is ensured by the quantum effective free path calculated as the mean dis-
tance  between the centers of neighboring particles:

l0 = dp 




π ⁄ 6
1 − m





1 ⁄ 3

 . (8)

Models of Porous Media. Charge of Spheres of Close Dimensions. A packing (charge) of identical spheres
is the simplest and universal model used in the case where the porous medium represents a packing of solid particles
with a small distribution by size dmax

 ⁄ dmin < 2 [16]. The porosity of random packings is m D 0.4, as a rule. Formulas
for the structural characteristics in this model are as follows:

S = 
6 (1 − m)

dp
 ,   d0 = 

2
3

 
m

1 − m
 dp ,    l = 

2
3

 
m

1 − m
 dp (9)
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(d0 is taken from the determination of the equivalent pore channel, and l is taken from [19]). We can calculate the
quantum effective free path by two methods: using either formula (8) or the expression obtained in [3]:

l0 = 
2
3

 
m

1 − m
 dp + 

2
3

 dp = 
2

3 (1 − m)
 dp .

Packings of Parallel Fibers. This model corresponds to porous systems made up of fibers or particles with a
large dimensional ratio from approximately 10 to infinity (Fig. 1). Formulas for the characteristics of such a medium
are as follows:

S = 
4 (1 − m)

dp
 ,   d0 = 

m

1 − m
 dp ,   l = 

πdp

4 (1 − ε)
 .

The last formula has been taken from [20] where intersecting bundles of fibers were considered.
Packings of Parallel Sheets. This model describes porous media made up of plates or particles with a large

ratio of large dimensions in relation to a smaller dimension (10 or more) (Fig. 2). Formulas for the characteristics of
a porous medium in this model are as follows:

S = 
2 (1 − m)

dp
 ,   d0 = 

2m
1 − m

 dp ,   l
M
 = 

m
1 − m

 dp .

In calculating the quantum mean free path in the direction parallel to the planes lN, the parallelism of the layers and
the distance between the layers are determining, since these characteristics assign the maximum quantum path in this

direction lNmax. It can be shown that lN C 
m

1 − m
 dp ln (lNmax

 ⁄ lM). In actual media, we have lN C 2−3lM.

Media with a Higher-Than-Average Porosity. Media with a porosity higher than that of a random spherical
packing (m > 0.45) are formed in the presence of internal cavities and hollows in the particles (e.g., packings of rings,
saddle-shaped particles, and perforated particles) or in solid materials of the spongy type. In the latter case the porosity
may attain m D 0.95 or more. The specific surface of media consisting of standard (geometrically definite) particles is
easily calculated with the use of (4) and the porosity measured. The specific surface and other parameters are indicated
by suppliers of standard particles.

Spongy Porous Medium (Model of Hollow Spheres). Media with a medium porosity (m < 0.6). It is difficult
to determine the dimension of the solid-phase "element" dp for continuous porous media not made up of individual
grains (spongy and foam ones). In practice one can measure the pore diameter (maximum inside dimensions) dpor, the
mean diameter of the pore cross sections d

_
por (d

_
por = πdpor

 ⁄ 4 for spherical pores), the number of pores per unit
length, etc. In certain cases the dimension is calculated from the measured specific surface and porosity. Parameters

Fig. 1. Porous medium formed by a packing of parallel fibers.

Fig. 2. Packing of parallel sheets — a porous-medium model.
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measured directly and those calculated are significantly different, and to determine the relationship between them and
to find the specific surface, the quantum free path, and other characteristics in terms of them, one must use the po-
rous-medium models.

The model of hollow spheres distributed in a solid medium can be used as a geometric model for moderately
high porosities (m < 0.6) (Fig. 3a). It is assumed that the medium’s geometric structure is determined mainly by iso-
lated pores (although they can be interconnected.) The model is convenient in that the basic structural-geometric rela-
tions are somehow analogous (inverse) to those of a standard porous medium — a spherical packing. An expression
for the specific surface area is obtained from (9):

S = 
6m
dpor

 .

From relation (1) it follows that

d0 = 
2
3

 dpor .

Formulas for the remaining structural characteristics in this model have the form

d
_

por = 
π
4

 dpor ,

dp = 
2
3

 
1 − m

m
 dpor , (10)

l = 
2

3
 dpor ,   l0 = 

2

3
 dpor + 

dp

2
 . (11)

Media with a High Porosity (m > 0.6). The model of hollow spheres can also be used for description of a po-
rous medium with a high porosity. The "intersection" of cavities and related formation of "windows" between the
pores and decrease in the specific surface should be taken into account. Such media can be represented by the model
of intersecting hollow spheres (Fig. 3b).

Let us express certain parameters of a porous medium within the framework of this model. We make the fol-
lowing assumptions:

(1) spheres have the same diameter dpor;

Fig. 3. Spongy medium: a) model of nonintersecting hollow spheres, b) model
of intersecting hollow spheres.
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(2) spheres are arranged in a relatively ordered manner so that there is no simultaneous intersection of three
spheres (triple intersections); the packing is characterized by coordinate number N; it is permissible to use the model
of ideal spherical packings for calculation of the mean-statistical geometric characteristics;

(3) we can take dpor for the characteristic pore dimension, since the high degree of intersection (>50%) is
rather uncommon.

We consider a pair of neighboring spheres in the packing (Fig. 4). As the centers of the spheres approach
each other by 2δ (the relative change in the distance is equal to δ ⁄ rpor), the area of the "window" between the pores

will be swin = 2πrporδ (the window’s fraction in the total spherical surface is calculated from swin
 ⁄ spor = δ ⁄ (2rpor)),

and the effective volume of each sphere will decrease by ∆Vpor = πh2(3rpor − δ) ⁄ 3 (the relative decrease in the volume

is determined from 
∆Vpor

Vpor
 = 

δ2(3rpor − δ)

4rpor
3 ).

The porosity of the system will be expressed by the parameters of the initial packing of hollow spheres min,
N, and rpor and the value of the approach of the spheres δ:

m = min 

1 − 
3
4

 N 




δ
rpor





2

 + 
1
4

 




δ
rpor





3

1 − 
3δ
rpor

 + 3 




δ
rpor





2

 − 




δ
rpor





3 F 
min

1 − 
3δ
rpor

 . (12)

Hence in the first approximation by δ ⁄ rpor we have

δ = 
m − min

3m
 rpor . (13)

Taking into account that the fraction of the windows in the pore surface is Nδ ⁄ (2rpor), we obtain

Ψ = 
Nswin

spor
 = N 

m − min

6m
 . (14)

The quantum mean free path from (11) in such a system will be expressed by the series

l = 
2
3

 dpor (1 − Ψ) + 
4
3

 dpor Ψ (1 − Ψ) + 
6
3

 dpor Ψ
2
 (1 − Ψ) + 

8
3

 dpor Ψ
3
 (1 − Ψ) + ... .

Fig. 4. Pair of hollow spheres, i.e., pores shifted toward each other to form a
"window" between the pores.
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After simple transformations, we obtain

l = 
2

3 (1 − Ψ)
 dpor . (15)

The specific surface area per unit volume of one pore is equal to

Spor = 
spor − Nswin

Vpor − N∆Vpor

 = 
4πrpor

2
 − 2πNrporδ

4
3

 πrpor
3

 − Nπδ2
 
3rpor − δ

3

 F 
6rpor − 3Nδ

2rpor
2  ,

then, for the porous medium (by analogy with formula (4)), we have

S = Sporm = m 
6rpor − 3Nδ

2rpor
2

 . (16)

Let us give an example of using the model of hollow spheres. In [21], the medium is described by the po-
rosity m = 0.87 and the number (assigned by the supplier) of pores per unit (inch) length of the secant segment n =
32 inch−1. We obtain a formula for changing from this characteristic to other geometric parameters of the porous me-
dium. According to the Cavalieri–Acker principle, m inches of the pore space and 1–m inches of the space occupied
by the solid phase account for 1 inch of the secant segment in the porous medium. Thus, knowing n and m, we es-
tablish the mean length of the part of the secant segment per pore (in terms of meters): L = 0.0254m ⁄ n. Assuming
that the pore geometry remains spherical for both the model of hollow spheres and the model of intersecting hollow
spheres, we calculate the mean length of the part of the secant segment per pore as L = 2 ⁄ 3dpor. Equating the two
expressions for L, we obtain dpor = 0.0381m ⁄ n.

Thus, for the ceramics investigated in [21] (m = 0.875 and n = 32 inch−1), we have dpor = 1mm. According

to (14)–(16), for the basic close hexagonal packing (N = 12 and min = 0.74), the fraction of windows in the pore sur-

face is Ψ = 0.31, the quantum mean free path is l = 0.96 dpor, and the specific surface is S = 3500 m2 ⁄ m3. If the

basic packing is random (N = 8 and min = 0.6), we have Ψ = 0.42, l = 1.15 dpor, and S = 2900 m2 ⁄ m3. We note

that we have δ ⁄ rpor D 0.05 in the first case and D0.1 in the second case. To determine the dispersion, the permeability

coefficients, and the quantum effective free path l0 = l + dp
 ⁄ 2 we must evaluate the characteristic dimension of parti-

cles (elements) of the solid phase. According to (10), we obtain dp = 
2
3

 
1 − m

m
 dpor = 0.1 mm.

CONCLUSIONS

1. We have systematized and given the formulas for calculation of the structural characteristics of variously
structured porous media. The model of hollow spheres (variants of intersecting and nonintersecting hollow spheres) has
been proposed for description of the structural characteristics of high-porosity media of the spongy ("foam") type. With
these models, we have obtained formulas relating the structural characteristics of porous media and the characteristic
of heat and mass exchange.

2. We have discussed the methodological issues of formulations of models of dispersive and radiative transfer
in porous media: inclusion of the relaxation component into the dispersion and evaluation of the quantum effective
free path in considering a porous body as a homogeneous gray medium.

3. The data of the present work can be used for scientific and engineering-technical calculations of thermo-
chemical reactors, gas generators, and different chemical reactors and units, where porous media are used as the work-
ing media.

This work was carried out with support from INTAS, grant No. 05-1000005-7745.
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NOTATION

d, diameter, m; dp, mean diameter of particles (elements) of the solid phase, m; d0, effective (equivalent) di-
ameter of the pore channel, m; dpor, mean diameter of the pores of a porous medium, m; D, diffusion coefficient,
m2 ⁄ sec; h, surface coefficient of interphase heat exchange, W ⁄ (m2⋅K); k0 and k1, permeability coefficients of a porous
medium in the Forchheimer formula, m; L, mean length of the part of the secant segment per pore, m; l, quantum
geometric mean free path, m; l0, quantum effective mean free path in a porous medium, m; m, porosity; n, number of
pores per unit length of the secant segment, 1 ⁄ inch; N, coordination number of a packing; Nu, Nusselt number; p,
pressure, Pa; Pr, Prandtl number; r, radius, m; Re, Reynolds number; s, surface area, m2; S, specific surface area,
m2 ⁄ m3; T, temperature, K; T

~
, crookedness of  filtration channels; u, velocity (rate), m ⁄ sec; V, volume, m3; ∆Vpor,

change in the pore volume on the formation of a "window," m3; α, volume coefficient of interphase heat exchange,
W ⁄ (m3⋅K); δ, half the approach of the centers of the pores, m; ε, emissivity factor of the surface of a porous medium;
λ, thermal conductivity, W ⁄ (m⋅K); µ, coefficient of dynamic viscosity, Pa⋅sec; ν, coefficient of kinematic viscosity,
m2 ⁄ sec; σ, Stefan–Boltzmann constant, W ⁄ (m2⋅K4); ρ, density, kg ⁄ m3; Ψ, fraction of "windows" in the pore surface.
Subscripts: g, gaseous; in, initial; max, maximum; min, minimum; p, particle; por, pore; rad, radiative; win, "window;"
N, longitudinal; M, transverse; 

_
 , for the cross sections of the pores at section.
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